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Abstract—Natural convection through square openings in a horizontal partition for the case of
heavier fluid above the partition is investigated using air as the fluid medium. The test results relating
the Nusselt number to the Grashof number and to the ratio of opening thickness to opening width
are found to agree generally with the requirements of theory. Although the Prandtl number for air
remained constant in all tests, it was nevertheless possible, with the help of the theory, to show the
approximate influence to be expected for any value of the Prandtl number. Because of the high thermal
resistance of the partition material the test results may also be expected to apply directly to mass
transfer. The following range of variables was covered in the tests: Grashof number Gry based on
partition thickness and air temperature difference across the opening, 3 x 10* < Gry < 4 x 107;
ratio of partition thickness to the side of the square opening H/L, 0-0825 < H/L < 0-66, with openings
of 6 X 6in,9 X 9inand 12 x 12 in,

IN A previous paper (Part 1), the theory and
experimental results for natural convection
across openings in vertical partitions were
given. In this situation buoyancy forces resulting
from temperature or concentration differences
between the fluids on either side of a vertical
partition cause a fluid interchange across a
partition opening with resultant heat or mass
transport.

To complete the investigation of natural
convection across openings in partitions the
theory and experimental results for horizontal
partitions will now be presented. As far as is
known no previous work of this kind has been
carried out. The situation of greatest importance
is that where the fluid above the opening in a
partition has the greater density; an unstable
condition then arises, and an interchange of
lighter and heavier fluid takes place. A rather
surprising result of this interchange, which
would not be immediately recognized but which
is predicted by the theory and was verified

* For Nomenclature, see Part 1.

experimentally, is that heat- or mass-transfer
rates increase with increasing partition thickness,

The following theoretical considerations are
carried out in considerable detail in order to
introduce a method of analysis suited to con-
vection problems generally. The need for a
systematic approach to such problems arises,
in particular, when several dimensionless
variables are to be related. For this condition
it is often difficult, if not impossible, to obtain
a relationship among the variables by experi-
mental means alone that is not partly or entirely
empirical. In experimental work an attempt is
often made to relate the dimensionless variables
of the problem as products of powers, but since
the range of variation of one or more of the
variables is usuvally limited, no complete
equation can be written for the phenomenon.
Moreover, the exponents on the dimensionless
variables themselves are often inter-dependent;
consequently even small experimental errors
may cause some of the exponents to have
apparent values that a theoretical investigation
could have shown to be impossible.
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THEORY

In the situation shown in Fig. 1, two sealed
cavities containing fluid at densities p; and
pa (p1 > py), with temperatures T, and 7T, and
concentrations ¢; and ¢,, are separated by a
partition of thickness H having an opening of
characteristic width L (length of a side for a
square opening). The partition is assumed to be
impermeable to heat or mass transfer.

FiG. 1. Schematic representation of natural convection
through an opening in a horizontal partition.

Since the condition of the fluid at the opening
is inherently unstable, no steady distribution of
flow can be assumed. For determining the general
relationship between variables, however, any
flow distribution in which the lighter fluid
flows upward with velocity V, and the heavier
fluid flows downward with velocity J; may be
considered. The pressures p; and p, at the level
of the top and bottom of the partition are
presumed everywhere constant in the horizontal
plane.

Neglecting any interchange of fluid in the
horizontal direction, Bernoulli’s equation yields,
for the lighter fluid flowing upward

P — D1 = P2 \‘2’2 + b 4 pegH Y]
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and for the heavier fluid flowing downward

Vi
Po=P1= —pP1y — L+ pigH (2
or, combining equations (1) and (2),
Ve Vv
(pr— p)gH = py 2’1 + Py 5 + (h+ 5. (3)

Here g is the acceleration due to gravity and
/; and /, are pressure losses due to entrance into
the opening and fluid friction.

The condition of no net flow across the
opening requires that

piEVy = p BV, 4
where E, and FE, are the cross-sectional areas
over which the flow occurs.

If p, and p, do not differ greatly it is reasonable
to assume that both ¥, and ¥V, and consequently
E; and E, are approximately equal. With the
further assumption that /, ~ [, equation (3)
then becomes:

— 4 2/
(O PR e
o, p p
From knowledge of the general behaviour of
fluid fiow in pipes and conduits it can be
assumed that for small ranges of all variables

Ve (H\e/VL\b
e

where C is a constant and v is the kinematic
viscosity. The exponent g must lie between
0 and 1 and exponent b must lie between 0 and
—1. (Provided only that the flow is not
transitional, i.e. as occurs in a pipe at the critical
value of Re.)

(6)

*In a study of natural convection in an insulated
vertical tube with the higher temperature at the lower end.
Grassmann [1] takes a similar approach in deriving the
flow equations. Owing to the large ratio of height to
opening size (pipe diameter), however, his assumptions
for the pressure losses do not apply to the present prob-
lem. Similarly, the assumption that all heat transfer
takes place in the lateral direction between the two
streams of fluid is not valid in the present case.
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Insertion of equation (6) into equation (5)

gives
on-vfis el (4} o

Again for a small range of C (H/Ly (VL[v),
equation (7) can be approximated by

Fer-ral(J )] @

where d must now lie between 0 and 1. C; is
another constant. From equation (8)

dp H\ed [L\bd
208 o F - .
v =Same(g)" (5] o
or
A 1/(2-+bd)
a (5 )
V= H\edi@+bd) [\ bd/@+bd) (10)
=6

where the exponent bd lies now between 0 and
—1 and ad lies between 0 and 1, with C, as a
new constant.

Having obtained an expression for velocity,
the heat- and mass-transfer rates across the
opening become respectively

, L2
q = pcp 3 (T, - TV (11
and
12
W= 5(02 — )V (12)

with ¢, as the specific heat.

Introducing the heat-transfer coefficient Az
and the mass-transfer coefficient Ay, defined as
hy = ‘?J]Lz(Tz - Ti)

and
m = m[L2p(cy — ¢y),

equations (10-12) lead to the following equations
in dimensionless form:

for heat transfer

hrH
C, (A pg H3\V2+bd) ¢ [\ (ad-bd)/@+bd) () 5y
-5 (5) " (8) (F)
L\ (ad~bd)/ (2+bd)
= C,Grypl/ @+bd) ( I?) Pr (13)
and for mass transfer
hmH
-5 = Shy
L\ (ad-bd)/2+bd) / y
= CyGryl/@+vd) (f{) (f))
L\ (ad—~bd)/(2+bd)
= CyGryt/¢+bd) (i[) Sec. (14)

Here k is the thermal conductivity of the fluid
and D is the diffusion coefficient.

Nug = Nusselt number based on partition

thickness,

Shp = Sherwood number based on partition
thickness,

Grg = Grashof number based on partition
thickness,

Pr = Prandtl number,
Sc¢ = Schmidt number.

By summing the exponents on H in equation
(13) or (14) it is readily found that either Az or
Ay, is proportional to H1-ad)/ @+vd) and because
of the limits on ad and bd then (1 — ad}/(2 -+ bd)
lies between 0 and 1. Thus the heat or mass
transfer will either remain constant or increase
with increasing partition thickness. Equations
(13) and (14) can also be used as a partial check
on experimental results because the permissible
range for the exponent on one dimensionless
group is conditioned by the exponent on the
other. If, for example, bd is found to be —0-2
then the exponent on (L/H) in equations (13)
and (14) must lie between (0 -+ 0-2)/1-8 =2
and (1 4 0-2)/1-8 = 2.

In employing equations (11) and (12) it was
tacitly assumed that essentially no heat or mass
transfer takes place by thermal conduction or
mass diffusion in the fluid. For fluids with high
thermal conductivity and diffusion coefficients
additional consideration must be made.
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Assuming negligible heat or mass transfer in
the horizontal direction, the equations for the
heat and mass conservation in the opening are

ar dzr

and
de d2e

where o= k/pcp) 15 the thermal diffusivity and
z is the distance in the vertical direction. Inte-
gration of these equations gives the expressions

Vz/o) — 17
T—T,=T,—T) [g%((f;//a)r:f]‘l (17)
(for temperature), and
Vz/D) — 1
c—a=l—a) | Sryamr—i]  0®

(for concentration). It will be noted that
equations {17) and (18) reduce to the pure
conduction and diffusion forms

(T — Tl)/(T2 - Tl) = ’v/H - (C - 6‘1)/(6‘2 - Cl)s

for zero velocity or large o and D; and to the
pure convection forms T == 7, (constant) and
¢ == ¢; (constant) for high velocities or small
a and D.

The heat and mass being transported across
area E; ~ LZ%/2 are respectively

/ dT
gg = (V,a(l'o + ) —k &) L2 (19)

and

d
Vg — (Vpc — pD a; ) 2 (20)

where (i, - ¢pT) is the enthalpy of the fluid.
After substituting for d7/dz and dc/dz, obtained
from equations (17) and (18), equations (19) and
(20) become

12 T VH/a) — T,
in= o'y fo o[ BB =B Lo

and

L2 {cl exp (VH/D) — ¢,

2 | exp(VH/D) — 1 } 22

mg=Vp
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The net heat and mass transfer across the parti-
tion due to fluid flow in both directions is thus
respectively,

. L*[[Tiexp (VH[a) — T,
g = Vocy Zi[ exp (VH/a) — | ]

Tyexp(—VHja) — T,
o [ exp (—VHla) — 1 }}

L2 VH[a} + 1
:m%gn~mﬁg%ﬁﬁ%}eg
and
Iz VHID) + 1
m=Vp 5 (c1—c) [Z;EEVH;D%—% 1]. @9

It will be recognized that these equations
reduce to the pure convection forms:

9

. L2 :
q="Vpcp 5 (Ty—T) (25)

and
2

m=Vp 5 (e, — ¢) (26)
for high velocity or low a or D. Similarly, for
low velocity or high o and D the equations
reduce to the pure conduction and diffusion
forms:

G =kI* -

(T, — Ty)
" @n

and
(6 — @)

m == gDL? 7

(28)
Equation (10) can now be inserted into equations
(23) and (24) and the Nusselt and Sherwood
numbers evaluated. It will be noted, however,
that the density difference 4 p, which was initially
assumed to be equal to p; — p,, must now be
taken as an average value since both tempera-
ture and concentration, on which density
depends, now vary throughout the height H.
Writing

4

7"-’ — BrAT -+ fmdc (29)
where Br and‘Bm are the coefficients of thermal
and mass expansion for the fluid, then the
average of 4T and dc over the height H can
be inserted to obtain the average dp.
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From equation (17) the average temperature
difference over the height H between upward-
and downward-flowing fluid is

e

B [exp (—Vz/a) — lj,} dz
exp (—VH/[a) —1

ATavg =

exp (VH/a) +- 1 2a
=D |1~ v

Similarly, from equation (18) the average con-
centration difference is

, exp(VH/D)+1 2D
v =1~ ) |3 7y 1~ v} O

Equations (30) and (31) can now be inserted
into equation (29), and this with equation (10)
can be inserted into equations (23) and (24)
to obtain the Nusselt and Sherwood numbers.
Consequently, for the general case of all fluids
the relationship between the Nusselt or Sher-
wood numbers and the remaining variables can
be expressed as

(30)

Nu = f[Gru, Pr, HIL, Br(T, — T}), Sc] (32)
and
Sh = f[Gru, Sc, HIL, Bu(c, — ¢, Pr]  (33)

where fsignifies the same function in both cases.

Equations (32) and (33) are an interesting
example, obtained directly from theory, in
which heat and mass transfer are interrelated.
The same kind of relationship would be obtained,
of course, in the case of two-component mass
transfer in place of heat transfer plus mass
transfer. For the special case Pr = Sc, equations
(32) and (33) reduce to

Nu = f(Gru, HIL, Pr) (34
and
Sh = fi(Grg, HIL, Sc). 35
Application of the theory
The foregoing equations are approximate to
a considerable degree. Nevertheless they can be
used in conjunction with existing data from
other flow problems to estimate the general
magnitude of Nu and Sh, which would be
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expected in a practical situation. In conjunction
with limited experimental results obtained with
a given fluid, the equations may also be used to
extrapolate data for other fluids. To illustrate
these procedures, the conditions to be expected
for air, the fluid used in the tests reported in the
following section on experimental results, will
be considered. Returning to equation (6), it is
known from hydraulic experiments that the
head loss / at a square entrance into a pipe can
be expressed as [ = 0-5p(}%/2). Similarly, for a
re-entrant pipe / = 1-0p(V%/2).

Assuming that these values apply approxi-
mately for the situation in Fig. 1, equation (5)
becomes

4
7_" gH = (2-3)1?

Vo= J [‘lp” gH/(2—3)J.

With heat transfer alone, and with practical
conditions of T, = 70°F, T; = 30°F, H =1 in
and L = 6 in, for which the mean temperature
is 50°F with a = 0-78 ft?/h and v = 0-56 ft2/h,
equation (23) can now be investigated.

With the given data and equation (37) the
term VH/a has a value between 100 and 125;
thus equation (23) reduces to the form of
equation (11). Equation (30) becomes

(36)
or

(37

ATavg ~ 098 (T, — T). (3%
It is now necessary to determine whether
equation (36) can be expected to have the
approximately correct form in the range of
given conditions. Strictly speaking this cannot
be done without knowing the distribution of
flow in the opening. It seems reasonable to
assume, however, that flow will occur somewhat
asindicated in Fig. 1, in which case the Reynolds
number, which indicates the range of validity of
equation (36) for hydraulic flow in orifices, can
be evaluated using about one-half of the
opening width L as characteristic length, The
Reynolds number VL/2v so obtained has the
value of about 400, which is sufficiently close
to the range covered in orifice experiments to
indicate the validity of equation (36).
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Forming the Nusselt number using equation
(37) yields the theoretical relation for air

Nug Grgl/2Pr

1
T2V
= (0-29-0-35)Gru'/2Pr. 39

Experimental data for air would be expected
to take the form of equation (13).

EXPERIMENTAL

Tests were carried out in the large wall-panel
test unit used in previous tests on natural
convection through openings in vertical parti-
tions [2]. The apparatus [3] consists of two
boxes 8 ft square and 4 ft deep (Fig. 2). One box
(the warm side) is maintained at approximately
72°F by means of water circulated through the
tubing of a panel on its inside wall. A separate
tubing arrangement in the wall is separated
from the panel by insulation and maintained
automatically at the same temperature to prevent
heat flow to the environment from the inner wall
panel. The cold side can be maintained at any
temperature down to about —20°F by means of
a low temperature water—glycol-alcohol liquid
from a separate cooling system that flows in the
tubing of a wall panel and in a secondary finned
tubing arrangement.

W. G. BROWN

Since the test apparatus was designed for use
with vertical walls it was necessary to build a
special wall section (Fig. 2) in order to obtain
a horizontal partition in which openings of
various sizes could be cut for the tests. The test
section was built in the form of a cubical box,
3 ft on a side, protruding from the wall.

By constructing all parts of the wall and test
section of insulating material, a twofold advan-
tage was afforded, (1) a large portion of the total
heat transfer would occur across an opening,
and (2) the convection conditions approximate
closely those that would occur with density
differences due to concentrations alone, the
result being that the heat transfer test results
would be expected to apply for mass transfer
as well. The wall, with the exception of the top
and bottom of the test section, was constructed
of 2-in foamed polystyrene insulation on a }-in
plywood backing. The partitions forming the
top and bottom of the test section consisted
solely of layers of foamed polystyrene.

Because of space limitations and for ready
access to the test section the two boxes of the
apparatus were separated by a distance of 2 ft.
An insulated wall was then built around this
region to assure a minimum load on the cooling
system of the cold-side box.

| AT ) I
A R ]
| I N
2 IN FOAMED | | THERMOCOUPLES | |
POLYSTYRENE ® o o | °
INSULATION ! I o
o d OPENING | o FIN;‘IED TUBING
o of - 1 /
GUARD -4 ' i 4
PANEL —/4 L | °
o
PANEL ___~T | WwARM SIDE | .| colp sibE Pl pANEL
HEATING | 4 COOLING
[e]
[ o
4 ! ©
WARM SIDE | | °
PUMP AND | access K
WATER DOOR °
RESERVOIR “\ v | G]J
| o
L [ INSULATION i

Fi1G. 2. Equipment arrangement for natural convection heat flow through an opening in a horizontal partition.
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Instrumentation

Thirty-gauge copper—constantan thermo-
couples were arranged to measure the air
temperature at five locations 10 in above the
test partition and opening and also at five
locations at the elevation of the centre of the
box-like test section. Each set of thermocouples
was arranged in the form of a square, 18 in
on a side, with one thermocouple in the center
directly above or below the center of a square
opening in the test partition. Additional thermo-
couples were installed to measure the air
temperature in the warm- and cold-side boxes
at locations remote from the test section.

The temperature control for both warm and
cold sides was sufficient to maintain the air
temperature at any given location constant to
within 0-2 degF. The total heat input to the warm
side was obtained directly from continuous
d.c. watt-meter recordings, the accuracy of the
power input thus obtained being about 2 per
cent.

Scope of tests and procedure

Tests were carried out with single square
openings of nominal size: 6 X 6in, 9 X 9 in and
12 x 12 in, with air temperature difference
across the opening ranging from about 20 to
90 degF. The thickness of the partition of foamed
polystyrene insulation was varied from 1 to 8 in.
One set of tests was also made with a 12 x 12-in
opening in an 8-in thick partition bevelled at a

16-0
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45° angle to a thickness of 2 in. A few tests
were also made with an opening in the lower
partition of the test section. For this case a
stable situation with no convection was to be
expected.

Before carrying out tests with various openings
it was necessary to calibrate the entire wall and
test section with a blank partition of given
thickness in place. This was done by deter-
mining the total heat transfer at various tem-
perature differences between the air in the warm-
and cold-side boxes. The results are given
graphically in Fig. 3 where the heat flow in
Btu/degF is plotted against air temperature
difference. (The warm-side air temperature was
maintained throughout at 72°F.)

With an opening in the partition, a small
portion of the total heat transfer takes place by
radiation, the amount of which was calculated
by assuming that both the warm- and cold-
side boxes behaved as black bodies, i.e.

Gr = L*o(T} — T3, (40)

where ¢ is the Stefan-Boltzmann constant and
subscripts denote surface conditions. (Inter-
change with the edges of the opening was
neglected.)

Test results

In accordance with equations (39) and (13)
a relationship is to be expected between Nuy/Pr
and Gry, with the ratio of partition height to

G
2]

15-0

TOTAL HEAT FLOW (Btu) PER degF
TEMPERATURE DIFFERENCE

20 30 40

50

60 100

AIR TEMPERATURE DOIFFERENCE (°F)

Fic. 3. Calibration of the test section and wall with horizontal partitions of various thicknesses.
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opening width H/L as a secondary variable.
These dimensionless groups were evaluated
for all tests using the average of 7, and 7, to
obtain air properties; the results are given in
Fig. 4. (The air temperatures 7, and T, employed
in calculations are the averages of readings of
the four outer thermocouples above and below
the opening.) From Fig. 4 it will be noted that
agreement with the ideal situation as represented
by equation (39) is fairly good, but that the
experimental results are all somewhat lower than
called for by this equation. This effect, as might
be expected, is most pronounced at high values
of H/L because fluid friction was neglected in
equation (39).

As may be seen from Fig. 4 the experimental
accuracy of the data is not sufficient to deter-
mine the effect of the term H/L with great
accuracy. The data were rearranged, however, in
accordance with equation (13), assuming several
values of the exponent on H/L in the term
Nug(H/L)e*?/Pr and plotting the results against
the Grashof number. A value of exp =1}
appeared to correlate the data with fair accuracy
(Fig. 5). A mean curve through the points in
this figure gives the equation:

Nug = 0-0546 Grg®Pr(L/H)'3.  (41)

From the discussion following equation (14)
it will be appreciated that the exponents on
Gry and (L/H) fall within the range expected
from theoretical considerations. The range of
validity of the equation is for

3 X 108 < Grg < 4 x 107
and
0-0825 << H/L < 0-66,

and should be correct for any value of the Prandtl
number greater than that of air (Pr = 0-71).
The few tests carried out with an opening in
the lower partition of the test section indicated
pure conduction heat flow through stratified
air. The measured heat flow in this case was less
than the experimental accuracy of measurement.

Extrapolation of the test results for low Prandtl
or Schmidt numbers
Experimental data may be used to estimate the
value of the Nusselt or Sherwood numbers for
low values of the Prandtl or Schmidt numbers.
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Making use of equation (30) the “‘effective”
Grashof number is:

exp (VH/a) + 1] —2a
Gre = Gru {[exp (VHja) :T] VH } “2

where Gry is the Grashof number based on the
temperature difference (T, — T,). Forming the
dimensionless group VH/a with the help of
equations (10), (13) and (42) leads to

VH (L) (ad—~bd)/(2+bd)

S 2C3(Gi’e)1/ (2+bd) Pr
a

= 2(Nup/Pr)air Pr 43)

where (Nug/Pr)air is the value of the Nusselt
number divided by the Prandtl number obtained
with air.

Inserting equation (10) into equation (23)
yields for the Nusselt number

exp (VH/a) + 1
Num = Gy [exp (V) = 1]

L\ (@d—bd)/@+bd)
) Pr,

v@+bdy [
(Gre) (H
or

Nug(H/L)ac-dd)/@+bd) Py

_ [exp(VH[a) + 17 [ Nup(H/L)@d-bd)/2+bd)
N [eXP(VH/a) - 1} [ Pr ]m:

(44)

By inserting various values of (Num/Pr)air
corresponding to the range of tests into equation
(43), values of VH/a are obtained which can be
inserted into equation (42) to obtain Gry and into
equation (44) to obtain Nup(H/L)@d—bd)/@2+bd)/ py
for any given value of Pr. An example is given
in Fig. 6 for Pr = 0-01 as would be obtained
with liquid sodium. (The solid portion of the
curves corresponds to the range covered
in the tests with air.) It will be noted that for
Pr = 0-01 and for a value of Grg < 105 practi-
cally all heat transfer is due to conduction even
though fluid mixing and circulation still occurs.

DISCUSSION AND CONCLUSION
Equation (41) and Fig. 5, representing the
relation obtained in heat-transfer tests with air
as the fluid medium, should also be directly
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applicable within the range of Gry and H/L
covered in the tests for any value of Pr greater
than about 0-1. The test results obtained may
have been influenced to some extent by the
configuration of the test section itself: of
necessity it was relatively small compared with
the openings due to space limitations within the
test apparatus. So far as is known, however, no
previous tests of this kind have been carried out
and it is to be expected that the results are
sufficiently accurate for practical purposes.
The method devised for extending the data for
fluids having low Prandtl or Schmidt numbers
is not to be considered exact, owing principally
to the inherent approximations involved in
equations (15-31). For example, it was assumed
that the temperatures on both sides of the
partitions were everywhere constant, when in
reality there is always a temperature gradient
extending beyond the opening. Also, a gradient
in temperature through the opening would be
expected to have an additional influence on the
velocity not included by defining the effective
Grashof number as in equation (42). For
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practical purposes, however, the methods given
here should be useful in estimating either heat
or mass transfer for a wide range of conditions.
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Résumé-—Cet article étudie la convection naturelle de I'air a travers des ouvertures carrées dans une
paroi horizontale pour le cas du fluide le plus lourd au-dessus de la paroi. Les résultats d’essais donnant
le nombre de Nusselt en fonction du nombre de Grashof et du rapport profondeur sur largeur des
ouvertures concordent généralement bien avec la théorie. Bien que le nombre de Prandtl de 1'air reste
bien constant dans tous les essais, il a été néamoins possible, 4 1'aide de la théorie, de montrer approxi-
mativement I'influence de chaque nombre de Prandtl. Par suite de la grande résistance thermique de la
paroi les résultats des mesures peuvent étre directement appliqués au transport de masse. Les domaines
suivants des variables ont été explorés au cours des essais: nombre de Grashof basé sur ’épaisseur de
la paroi et la différence de température de I'air 4 travers ouverture 3 = 10* < Grg < 4 = 107;
rapport de ’épaisseur de la paroi a la section droite de ’ouverture 0,0825 < H/L < 0,66 avec des
ouvertures de 15 cm?, 23 cm?2, 30 cm2.

Zusammenfassung—Die natiirliche Konvektion durch quadratische Offnungen in ciner waagerechten
Trennwand mit dem schwereren Medium oben wurde fiir Luft als Konvektionsmedium untersucht.
Die Ergebnisse liefern die Abhingigkeit der Nusselt-Zahl von der Grashof-Zahl und dem Verhiltnis
Offnungsdicke zu Offnungsweite und stimmen im allgemeinen mit der Theorie {iberein. Obwoh! die
Prandtl-Zahl der Luft fiir alle Versuche konstant blieb, war es doch moglich. mit Hilfe der Theorie,
angenidhert den zu erwartenden Einfluss anderer Prandtl-Zahlen zu bestimmen. Wegen des grossen
thermischen Widerstands des Trennwandmaterials konnten die Ergebnisse auch direkt auf den
Stoffiibergang anzuwenden sein. Die Versuche umfassten folgenden Bereich von Variablen: Grashof-
Zahl Gry auf die Trennwanddicke und die Differenz der Lufttemperaturen beiderseits der Offnung
bezogen- 3 x 10¢ < Gry < 4 x 107; Verhiltnis der Trennwanddicke zu Breite der quadratischen
Offnung H/L,0,0825 < HJ/L < 0,66 bei Offnungen von 152 < 152 mm; 228 x 228 mm und 305 «
305 mm.

Annoramua—llccieoBanca Opolece eCTeCTBEHHON KOHBEKIIMY Yepe3 KBaIpaTHHe OTBePCTUA
B TOPU3OHTAJBHOM INEeperopojiKe afA CIy4as HAIWYUsA HAJ Ieperopopkoit 0onee TAKEnoi
KugKoCcTH, B KauecTBe ULKONl cpeAnl HCIIONB30BAJCA Boaxyx. Haitgeno, uro skcmepu-
MEHTAJIbHEE pesylbTAaTh, YCTAHABIUBAKIIME 3aBUCHMOCTb Meskny Kpurtepuamu Hyccenbra,
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Ipacroda m oTHOIIEHMeM TONIUMHEL OTBEPCTMA K ero IUMpHHe, B OCMEM COTIACYIOTCA €
TpeoBaHUAME Teopuu. 3Havyegue Kpurepud IIpaHATIAA AAA BO3AYXa OCTABAJIOCH NOCTOAH-
HEIM BO BCEX ONHITAX, TeM He MEHee YHAJIOCh TeOPeTHYECHH TOKABATh BOBMOKHOE BIMAHUE
naa mobrx 3Havennit kputepua IIpauaraa. Brarogapsa BLICOKOMY TepMUYECKOMY COMPOTH-
BIIEHHIO MATEPHANA MEPErOPONKM Pe3yIbTATH OMLITOB MOMHO NMPUMEHHTH HEIOCPEHCTBEHHO
K CJIY4ai IepeHoca MAacChl. B ombiTax WCHONb30BAICH CIENyIOIMil Auanma3oH 3HAYeHHil
mepeMeHHBIX : Kpurepuit I'pacroda, Gry, B KOTOPOM B KadeCTBe XAPAKTEPHOrO pasMepa
B3ATA TOMUIMHA MEPEropOAKH M PA3HOCTH TEMIEPATYp BO3LyXa I[ONEPEKR OTBEPCTHA,
3 x 10* < Grg < 4 x 10°. oTHOWmEHNe TOJNIMHLE TIEPErOPOAKH K CTOPOHEe KBATPATHOIO
orsepctus, H/L, 0,0825 < H/L < 0,66 npu oTBepcTHAX pasmepom 6 x 6 mwiimor, 9 x 9
motiMos 1 12 x 12 mwoitMoB.
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