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Asset-Natural convection through square openings in a horizontal partition for the case of 
heavier fluid above the partition is investigated using air as the fluid medium. The test results relating 
the Nusselt number to the Grashof number and to the ratio of opening thickness to opening width 
are found to agree generally with the requirements of theory. Although the Prandtl number for air 
remained constant in all tests, it was nevertheless possible, with the help of the theory, to show the 
approximate influence to be expected for any value of the Prandtl number. Because of the high thermal 
resistance of the partition material the test results may also be expected to apply directly to mass 
transfer. The following range of variables was covered in the tests: Grashof number G~H based on 
partition thickness and air temperature difference across the opening, 3 x I@ < Gus < 4 x 10’; 
ratio of partition thickness to the side of the square opening H/L, 00825 < H/L < 0.66, with openings 

of6x6in,9~9inand12x 12in. 

IN A previous paper (Part l), the theory and 
experimental results for natural convection 
across openings in vertical partitions were 
given. In this situation buoyancy forces resulting 
from temperature or concentration differences 
between the fluids on either side of a vertical 
partition cause a fluid interchange across a 
partition opening with resultant heat or mass 
transport. 

To complete the investigation of natural 
convection across openings in partitions the 
theory and experimental results for horizontal 
partitions will now be presented. As far as is 
known no previous work of this kind has been 
carried out. The situation of greatest importance 
is that where the fluid above the opening in a 
partition has the greater density ; an unstable 
condition then arises, and an interchange of 
lighter and heavier fluid takes place. A rather 
surprising result of this interchange, which 
would not be immediately recognized but which 
is predicted by the theory and was verified 

* For Nomenclature, see Part I. 

experimentally, is that heat- or mass-transfer 
rates increase with increasing partition thickness. 

The following theoreticat considerations are 
carried out in considerable detail in order to 
introduce a method of analysis suited to con- 
vection problems generally. The need for a 
systematic approach to such problems arises, 
in particular, when several dimensionless 
variables are to be related, For this condition 
it is often difficult, if not impossible, to obtain 
a relationship among the variables by experi- 
mental means alone that is not partly or entirely 
empirical. In experimental work an attempt is 
often made to relate the dimensionless variables 
of the problem as products of powers, but since 
the range of variation of one or more of the 
variables is usually limited, no complete 
equation can be written for the phenomenon. 
Moreover, the exponents on the dimensionless 
variables themselves are often inter-dependent ; 
consequently even small experimental errors 
may cause some of the exponents to have 
apparent values that a theoretical investigation 
could have shown to be impossible. 

869 



THEORY 

In the situation shown in Fig. 1, two sealed 
cavities containing fluid at densities p1 and 
pZ (pl > pZ), with temperatures TI and T, and 
concentrations c1 and c,, are separated by a 
partition of thickness H having an opening of 
characteristic width L (length of a side for a 
square opening). The partition is assumed to be 
impermeable to heat or mass transfer. 

and for the heavier fluid flowing downward 

V;” 
PZ-PI=-PI-~- -L+mH (2) 

or, combining equations (1) and (2), 

(~1 - p2)gH = p1 1’ + p2 ;’ + (I1 + 12). (3) 

FIG. 1. Schematic representation of natural convection 
through an opening in a horizontal partition. 

Since the condition of the fluid at the opening 
is inherently unstable, no steady distribution of 
flow can be assumed. For determining the general 
relationship between variables, however, any 
flow distribution in which the lighter fluid 
flows upward with velocity V, and the heavier 
fluid flows downward with velocity V, may be 
considered. The pressures p1 and pz at the level 
of the top and bottom of the partition are 
presumed everywhere constant in the horizontal 
plane. 

Neglecting any interchange of fluid in the 
horizontal direction, Bernoulli’s equation yields, 
for the lighter fluid flowing upward 

p2 - p1 = ~2 -2 -t 12 + p2gH 

* In a study of natural convection in an insulated 
vertical tube with the higher temperature at the lower end. 
Grassmann [l] takes a similar approach in deriving the 
flow equations. Owing to the large ratio of height to 
opening size (pipe diameter), however, his assumptions 
for the pressure losses do not apply to the present prob- 
lem. Similarly, the assumption that all heat transfer 
takes place in the lateral direction between the two 

(1) streams of fluid is not valid in the present case. 
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Here g is the acceleration due to gravity and 
I1 and I, are pressure losses due to entrance into 
the opening and fluid friction. 

The condition of no net flow across the 
opening requires that 

PA VI = ~2E2 V2 (4) 

where E1 and E2 are the cross-sectional areas 
over which the flow occurs. 

If p1 and pz do not differ greatly it is reasonable 
to assume that both V, and V, and consequently 
E, and E2 are approximately equal. With the 
further assumption that 1, N l,, equation (3) 
then becomes : 

gh z !f gH = V2 + ;‘. (5)” 

From knowledge of the general behaviour of 
fluid flow in pipes and conduits it can be 
assumed that for small ranges of all variables 

where C is a constant and v is the kinematic 
viscosity. The exponent a must lie between 
0 and 1 and exponent b must lie between 0 and 
- 1. (Provided only that the flow is not 
transitional, i.e. as occurs in a pipe at the critical 
value of Re.) 
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Insertion of equation (6) into equation (5) 
gives 

$gH=V2 1+c - [ (;r(:)“]. (7) 

Again for a small range of C (H/L)a (VL/v)b, 
equation (7) can be approximated by 

AP 
; gH = V2Cl [ (;r(T)&j” (8) 

where d must now lie between 0 and 1. C, is 
another constant. From equation (8) 

H ad ,T_ bd 

V*-tbd zziz d_’ H/C, L 
/sg 0 0 _ 

Y 
(9) 

or 

(lo) 

where the exponent bd lies now between 0 and 
- 1 and ad lies between 0 and 1, with C, as a 
new constant. 

Having obtained an expression for velocity, 
the heat- and mass-transfer rates across the 
opening become respectively 

and 

0 = pep; (T2 - T;)V (11) 

riz =pL;(CZ-C3Y (12) 

with cp as the specific heat. 
Introducing the heat-transfer coefficient hT 

and the mass-transfer coefficient hm, defined as 

and 

hT = e,‘L2(T2 - 7;) 

equations (10-12) lead to the following equations 
in dimensionless form : 

for heat transfer 
h&f 
__ = NUH 

k 
C2 ApgH2 W2+bd) L (ad-bd)i(2+bd) ~+~fi,, 

=-2 (-p-) (B) i-k-) 
= C,GpH1’ (2 +bdf 

L (ad-bd)i(Z+bd) 

i, 

- 

H, 

Pr (13) 

and for mass transfer 

‘+ = ShEi 

= C3GrHl’(2+bd) 

L (ad-bd)/(2+bd) 

0 Fl 
SC. (14) 

Here k is the thermal conductivity of the fluid 
and D is the diffusion coefficient. 

NUH = Nusselt number based on partition 
thickness, 

ShH = Sherwood number based on partition 
thickness, 

GrH = Grashof number based on partition 
thickness, 

Pr = Prandtl number, 
SC = Schmidt number. 

By summing the exponents on H in equation 
(13) or (14) it is readily found that either hr or 
h, is proportional to H(1-ad)if2+bd) and because 
of the limits on ad and bd then (1 - ~)~(2 + bd) 
lies between 0 and 1. Thus the heat or mass 
transfer will either remain constant or increase 
with increasing partition thickness. Equations 
(13) and (14) can also be used as a partial check 
on experimental results because the permissible 
range for the exponent on one dimensionless 
group is conditioned by the exponent on the 
other. If, for example, bd is found to be -0.2 
then the exponent on (L/H) in equations (13) 
and (14) must lie between (0 + 0*2)/l-8 = 4 
and (1 + O-2)/1+8 = $. 

In employing equations (1 l} and (12) it was 
tacitly assumed that essentially no heat or mass 
transfer takes place by thermal conduction or 
mass diffusion in the fluid. For fluids with high 
thermal conductivity and diffusion coefficients 
additional consideration must be made. 
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Assuming negligible heat or mass transfer in 
the horizontal direction, the equations for the 
heat and mass conservation in the opening are 

and 

(15) 

(16) 

where a(= k~pc~) is the thermal diffusivity and 
z is the distance in the vertical direction. Inte- 
gration of these equations gives the expressions 

The net heat and mass transfer across the parti- 
tion due to fluid flow in both directions is thus 
respectively, 

Tl exp (- WI/CC) - T, 
___~ . -.--__ _ 

exp (--- VH/a) - 1 II 

(23) 

and 

T - T1 = (T, _ TJ exp (Vz/a) -- 1‘ (24) __ - ~~~~.-.- 
exp (VH/ab -- 1 1 

(17) 

(for temperature), and 

c - Cl = (c2 - Cl) L exp (Vz/O) - 1 

-1 exp (VH/D) - 1 (18) 

(for concentration). It will be noted that 
equations (17) and (IS) reduce to the pure 
conduction and di~usion forms 

(T - Tl),‘(T2 - T,) -= z/H = (c - c,,/(c2 - cl), 

for zero velocity or large a and D; and to the 
pure convection forms T = Tl (constant) and 
c = cl (constant) for high velocities or small 
a and D. 

The heat and mass being transported across 
area E, in: Lz/2 are respectively 

$3 = ‘VP&, _t cpT) - k g 
( ) 

L2,t? (19) 

and 

Cl&? = vpc - pD ;; L2/2 
i 1 

(20) 

where (i,, -I- cJ) is the enthalpy of the fluid. 
After substituting for dT/dz and d&z, obtained 
from equations (17) and (IX), equations (19) and 
(20) become 

T, exp (VH/a) - T2 
exp ( VH/ajwlT I> (21) 

and 
L2 

?I& = Vp “i 
1 

cl exp (Vale) - cz 
--- . 

exp (VH/D) - 1 1 
(22) 

It will be recognized that these equations 
reduce to the pure convection forms: 

4 = V,x, ; (Tl - T2) (25) 

and 

riz = Vfs y (f 1 --- eJ (261 

for high velocity or low a or D. Similarly, for 
low velocity or high a and D the equations 
reduce to the pure conduction and diffusion 
forms : 

(27) 

and 

Equation (10) can now be inserted into equations 
(23) and (24) and the Nusrelt and Sherwood 
numbers evaluated. It will be noted, however, 
that the density difference LI p, which was initially 
assumed to be equal to p1 - pz, must now be 
taken as an average value since both tempera- 
ture and concentration, on which density 
depends, now vary t~oughout the height H. 

Writing 

dp = &AT + ,B,Ac 
P 

(29) 

where ,%P and ic3, are the coefficients of thermal 
and mass expansion for the fluid, then the 
average of AT and AC over the height H can 
be inserted to obtain the average dp. 
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From equation (17) the average temperature 
difference over the height H between upward- 
and downward-flowing fluid is 

(T, - 7’1) H 
AT,,, = H J I[ exp (VZ/IX) - 1 

0 exp (VH/u) - 1 I 

-[ 

exp (- Vz/a) - 1 dz 
exp (- VH/a) - 1 

= (” - T’) 
exp (VH/u) + 1 2~ -- 
exp (VH/a) - 1 I VH . (30) 

Similarly, from equation (18) the average con- 
centration difference is 

A’%? =:(‘I - ‘2) 
exp (VW@ + 1 
exp (VH/D) _ 1 - E]. (31) 

Equations (30) and (31) can now be inserted 
into equation (29), and this with equation (10) 
can be inserted into equations (23) and (24) 
to obtain the Nusselt and Sherwood numbers. 
Consequently, for the general case of all fluids 
the relationship between the Nusselt or Sher- 
wood numbers and the remaining variables can 
be expressed as 

NU =f [GM, Pr, H/L, BT(T~ - T,), SC] (32) 

and 

Sh = f [GYH, SC, H/L, ,&(cz - c,), f’rl (33) 

where f signifies the same function in both cases. 
Equations (32) and (33) are an interesting 

example, obtained directly from theory, in 
which heat and mass transfer are interrelated. 
The same kind of relationship would be obtained, 
of course, in the case of two-component mass 
transfer in place of heat transfer plus mass 
transfer. For the special case Pr = SC, equations 
(32) and (33) reduce to 

Nu = fi(GrH, H/L, Pr) 
and 

Sh =,f;(GrH, H/L, SC). 

Application of the theory 

(34) 

(35) 

The foregoing equations are approximate to 
a considerable degree. Nevertheless they can be 
used in conjunction with existing data from 
other flow problems to estimate the general 
magnitude of Nu and Sh, which would be 

expected in a practical situation. In conjunction 
with limited experimental results obtained with 
a given fluid, the equations may also be used to 
extrapolate data for other fluids. To illustrate 
these procedures, the conditions to be expected 
for air, the fluid used in the tests reported in the 
following section on experimental results, will 
be considered. Returning to equation (6), it is 
known from hydraulic experiments that the 
head loss I at a square entrance into a pipe can 
be expressed as 1 = 05p(V2/2). Similarly, for a 
re-entrant pipe E = 1*Op(V2/2). 

Assuming that these values apply approxi- 
mately for the situation in Fig. 1, equation (5) 
becomes 

or 

V = dEgH/(2-3)]. (37) 

With heat transfer alone, and with practical 
conditions of T, = 70”F, Tl = 30”F, H = 1 in 
and L = 6 in, for which the mean temperature 
is 50°F with a = 0.78 ft2/h and v = 0.56 ft2/h, 
equation (23) can now be investigated. 

With the given data and equation (37) the 
term VH/a has a value between 100 and 125; 
thus equation (23) reduces to the form of 
equation (11). Equation (30) becomes 

AT,,, 21 0.98 (Tz - Tl). (38) 

It is now necessary to determine whether 
equation (36) can be expected to have the 
approximately correct form in the range of 
given conditions. Strictly speaking this cannot 
be done without knowing the distribution of 
flow in the opening. It seems reasonable to 
assume, however, that flow will occur somewhat 
as indicated in Fig. 1, in which case the Reynolds 
number, which indicates the range of validity of 
equation (36) for hydraulic flow in orifices, can 
be evaluated using about one-half of the 
opening width L as characteristic length. The 
Reynolds number VL/2v so obtained has the 
value of about 400, which is sufficiently close 
to the range covered in orifice experiments to 
indicate the validity of equation (36). 
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Forming the Nusselt number using equation 
(37) yields the theoretical relation for air 

1 
NUH = ___ 

24(2-3) 
GrHli2Pr 

= (@29-@35)GrH1!2Pr. (39) 

Experimental data for air would be expected 
to take the form of equation (13). 

EXPERIMENTAL 

Tests were carried out in the large wall-panel 
test unit used in previous tests on natural 
convection through openings in vertical parti- 
tions [2]. The apparatus [3] consists of two 
boxes 8 ft square and 4 ft deep (Fig. 2). One box 
(the warm side) is maintained at approximately 
72°F by means of water circulated through the 
tubing of a panel on its inside wall. A separate 
tubing arrangement in the wall is separated 
from the panel by insulation and maintained 
automatically at the same temperature to prevent 
heat flow to the environment from the inner wall 
panel. The cold side can be maintained at any 
temperature down to about -20°F by means of 
a low temperature water-glycol-alcohol liquid 
from a separate cooling system that flows in the 
tubing of a wall panel and in a secondary finned 
tubing arrangement. 

GUARD 

PANEL --/’ 

PANEL ___, 

HEATING 

4 

Since the test apparatus was designed for use 
with vertical walls it was necessary to build a 
special wall section (Fig. 2) in order to obtain 
a horizontal partition in which openings of 
various sizes could be cut for the tests. The test 
section was built in the form of a cubical box, 
3 ft on a side, protruding from the wall. 

By constructing all parts of the wall and test 

section of insulating material, a twofold advan- 
tage was afforded, (1) a large portion of the total 
heat transfer would occur across an opening, 
and (2) the convection conditions approximate 
closely those that would occur with density 
differences due to concentrations alone, the 
result being that the heat transfer test results 
would be expected to apply for mass transfer 
as well. The wall, with the exception of the top 
and bottom of the test section, was constructed 
of 2-m foamed polystyrene insulation on a &in 
plywood backing. The partitions forming the 
top and bottom of the test section consisted 
solely of layers of foamed polystyrene. 

Because of space limitations and for ready 
access to the test section the two boxes of the 
apparatus were separated by a distance of 2 ft. 
An insulated wall was then built around this 
region to assure a minimum load on the cooling 
system of the cold-side box. 

I I 
I 

2 IN FOAMED THERMOCOUPLES 
POLYSTYRENE 

I D 

, 

WARM SIDE 

I 2 IN INSULATION 
-4 

FINNED TUBING 

--// 

COLD SIDE ---PANEL 

COOLING 

FIG. 2. Equipment arrangement for natural convection heat flow through an opening in a horizontal partition. 
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Instrumentation 
Thirty-gauge copper-constantan thermo- 

couples were arranged to measure the air 
temperature at five locations 10 in above the 
test partition and opening and also at five 
locations at the elevation of the centre of the 
box-like test section. Each set of thermocouples 
was arranged in the form of a square, 18 in 
on a side, with one thermocouple in the center 
directly above or below the center of a square 
opening in the test partition. Additional thermo- 
couples were installed to measure the air 
temperature in the warm- and cold-side boxes 
at locations remote from the test section. 

The temperature control for both warm and 
cold sides was sufficient to maintain the air 
temperature at any given location constant to 
within 0.2 degF. The total heat input to the warm 
side was obtained directly from continuous 
d.c. watt-meter recordings, the accuracy of the 
power input thus obtained being about 2 per 
cent. 

Scope of tests and procedure 
Tests were carried out with single square 

openings of nominal size : 6 x 6 in, 9 x 9 in and 
12 x 12 in, with air temperature difference 
across the opening ranging from about 20 to 
90 degF. The thickness of the partition of foamed 
polystyrene insulation was varied from 1 to 8 in. 
One set of tests was also made with a 12 x 12-in 
opening in an 8-in thick partition bevelled at a 

45” angle to a thickness of 2 in. A few tests 
were also made with an opening in the lower 
partition of the test section. For this case a 
stable situation with no convection was to be 
expected. 

Before carrying out tests with various openings 
it was necessary to calibrate the entire wall and 
test section with a blank partition of given 
thickness in place. This was done by deter- 
mining the total heat transfer at various tem- 
perature differences between the air in the warm- 
and cold-side boxes. The results are given 
graphically in Fig. 3 where the heat flow in 
Btu/degF is plotted against air temperature 
difference. (The warm-side air temperature was 
maintained throughout at 72°F.) 

With an opening in the partition, a small 
portion of the total heat transfer takes place by 
radiation, the amount of which was calculated 
by assuming that both the warm- and cold- 
side boxes behaved as black bodies, i.e. 

4r = L%(T,4 ,- T;,) (40) 

where 0 is the Stefan-Boltzmann constant and 
subscripts denote surface conditions. (Inter- 
change with the edges of the opening was 
neglected.) 

Test results 
In accordance with equations (39) and (13) 

a relationship is to be expected between NuH/Pr 
and GrH, with the ratio of partition height to 

AIR TEMPERATURE DIFFERENCE (‘F) 

FIG. 3. Calibration of the test section and wall with horizontal partitions of various thicknesses. 
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opening width H/L as a secondary variable. 
These dimensionless groups were evaluated 
for all tests using the average of T1 and T, to 
obtain air properties; the results are given in 
Fig. 4. (The air temperatures Tl and Tz employed 
in calculations are the averages of readings of 
the four outer thermocouples above and below 
the opening.) From Fig. 4 it will be noted that 
agreement with the ideal situation as represented 
by equation (39) is fairly good, but that the 
experimental results are all somewhat lower than 
called for by this equation. This effect, as might 
be expected, is most pronounced at high values 
of H/L because fluid friction was neglected in 
equation (39). 

As may be seen from Fig. 4 the experimental 
accuracy of the data is not sufficient to deter- 
mine the effect of the term H/L with great 
accuracy. The data were rearranged, however, in 
accordance with equation (13), assuming several 
values of the exponent on H/L in the term 
Nu&H/L)eXP/Pr and plotting the results against 
the Grashof number. A value of exp = 3 
appeared to correlate the data with fair accuracy 
(Fig. 5). A mean curve through the points in 
this figure gives the equation: 

NUH = 0.0546 GrH0’55Pr(L/H)1/3. (41) 

From the discussion following equation (14) 
it will be appreciated that the exponents on 
GrH and (L/H) fall within the range expected 
from theoretical considerations. The range of 
validity of the equation is for 

3 x lo4 < GYH < 4 x 10’ 
and 

0.0825 < H/L < 0.66, 

and should be correct for any value of the Prandtl 
number greater than that of air (Pr = 0.71). 

The few tests carried out with an opening in 
the lower partition of the test section indicated 
pure conduction heat flow through stratified 
air. The measured heat flow in this case was less 
than the experimental accuracy of measurement. 

Extrapolation of the test results for low Prandtl 
or Schmidt numbers 

Experimental data may be used to estimate the 
value of the Nusselt or Sherwood numbers for 
low values of the Prandtl or Schmidt numbers. 

Making use of equation (30) the “effective” 
Grashof number is: 

where GrH is the Grashof number based on the 
temperature difference (Tl - T,). Forming the 
dimensionless group VH/a with the help of 
equations (lo), (13) and (42) leads to 

L (ad-bd)l@+bd) 

.‘F = 2C3(Gre)lI @+b@ H 

0 

Pr 

= 2(NUH/Pr)air PV (43) 

where (NUH/PY)air is the value of the Nusselt 
number divided by the Prandtl number obtained 
with air. 

Inserting equation (10) into equation (23) 
yields for the Nusselt number 

Nu _c exp(VHb)+ 1 
H- 3 exp (VH/a) - 1 1 

(Gr,)li(2+bd) $ (ad-bd)‘(2+bd) pr, 

0 

or 

NuH(H/L) (UC-Wl@+W Pr 

-[ 

exp (VH/a) + 1 NuH(H/L)(ad-bd)l(2+bd) 

- exp (VH/a) - 1 I[ Pr 

By inserting various values of (NUH/Pi’)air 
corresponding to the range of tests into equation 
(43), values of VH/a are obtained which can be 
inserted into equation (42) to obtain GrH and into 
equation (44) to obtain NuH(H/L)(ad-bd)‘(2+bd)/Pr 
for any given value of Pr. An example is given 
in Fig. 6 for Pr = 0.01 as would be obtained 
with liquid sodium. (The solid portion of the 
curves corresponds to the range covered 
in the tests with air.) It will be noted that for 
Pr = 0.01 and for a value of GrH < lo5 practi- 
cally all heat transfer is due to conduction even 
though fluid mixing and circulation still occurs. 

DISCUSSION AND CONCLUSION 

Equation (41) and Fig. 5, representing the 
relation obtained in heat-transfer tests with air 
as the fluid medium, should also be directly 
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applicable within the range of &H and H/L 
covered in the tests for any value of Pr greater 
than about 0.1. The test results obtained may 
have been influenced to some extent by the 
configuration of the test section itself: of 
necessity it was relatively small compared with 
the openings due to space limitations within the 
test apparatus. So far as is known, however, no 
previous tests of this kind have been carried out 
and it is to be expected that the results are 
sufficiently accurate for practical purposes. 
The method devised for extending the data for 
fluids having low Prandtl or Schmidt numbers 
is not to be considered exact, owing principally 
to the inherent approximations involved in 
equations (15-31). For example, it was assumed 
that the temperatures on both sides of the 
partitions were everywhere constant, when in 
reality there is always a temperature gradient 
extending beyond the opening. Also, a gradient 
in temperature through the opening would be 
expected to have an additional influence on the 
velocity not included by defining the effective 
Grashof number as in equation (42). For 

practical purposes, however, the methods given 
here should be useful in estimating either heat 
or mass transfer for a wide range of conditions. 
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R&sum&Cet article Ctudie la convection naturelle de I’air B travers des ouvertures carrees dam une 
paroi horizontale pour le cas du fluide le plus lourd au-dessus de la paroi. Les rksultats d’essais donnant 
le nombre de Nusselt en fonction du nombre de Grashof et du rapport profondeur sur largeur des 
ouvertures concordent gCnCralement bien avec la thCorie. Bien que le nombre de Prandtl de l’air reste 
bien constant dans tous les essais, il a &6 ntamoins possible, B l’aide de la thCorie, de montrer approxi- 
mativement I’influence de chaque nombre de Prandtl. Par suite de la grande rtsistance thermique de la 
paroi les r&ultats des mesures peuvent &tre directement appliqu6s au transport de masse. Les domaines 
suivants des variables ont et6 explorCs au tours des essais: nombre de Grashof bask sur I’Cpaisseur de 
la paroi et la diffkrence de tempkrature de l’air & travers l’ouverture 3 .: 10” < GrH < 4 ,: 10:; 
rapport de l’tpaisseur de la paroi g la section droite de l’ouverture 0,0825 << H/L <’ 0,66 avec des 

ouvertures de 15 cm2, 23 cm2, 30 cm”. 

Zusammenfassung-Die natiirliche Konvektion durch quadratische ijffnungen in einer waagerechten 
Trennwand mit dem schwereren Medium oben wurde fiir Luft als Konvektionsmedium untersucht. 
Die Ergebnisse liefern die Abhlngigkeit der Nusselt-Zahl von der Grashof-Zahl und dem VerhPltnis 
dffnungsdicke zu offnungsweite und stimmen im allgemeinen mit der Theorie iiberein. Obwohl die 
Prandtl-Zahl der Luft fiir alle Versuche konstant blieb, war es doch miiglich. mit Hilfe der Theorie, 
angenPhert den zu erwartenden Einfluss anderer Prandtl-Zahlen zu bestimmen. Wegen des grossen 
thermischen Widerstands des Trennwandmaterials kiinnten die Ergebnisse such direkt auf den 
Stoffiibergang anzuwenden sein. Die Versuche umfassten folgenden Bereich von Variablen: Grashof- 
Zahl GrH auf die Trennwanddicke und die Differenz der Lufttemperaturen beiderseits der ijffnung 
bezogen. 3 x lo4 < GrH < 4 x 107; Verhlltnis der Trennwanddicke zu Breite der quadratischen 
&Tnung H/L,O,O825 < H/L < 0,66 bei &Tnungen von 152 x 152 mm; 228 x 228 mm und 305 x 

305 mm. 

AHHOTaqaJi-llCCne;rosancR IIpOueCC eCTeCTBeHHOti IFOHBeItIJllM Yeper, HBaApaTHbIe OTBepCTIlR 
B ropH3oBTanbBot neperopogBe arm cnyYaR BankIYxx Hag neperoponHo5i 6onee TFN~%JIOH 
)KIIjJKOCTH. B KaYeCTBe )KEIAKOti CpeAbI EICnO~b30BaJICII B03AyX. HatiseBo, YTO 3KCIIepI%- 
MeHTaJIbHbIe PeayJIbTaTbI, yCTaHaBJIHBaIO~&Ie 3aBHC5IMOCTb MeFKay IJpNTepIInMLI HyCCeJIbTa, 
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rpaCrO@a Ef OTHOtUeHSfeM TOJIWliKbI OTBepCTHR K eI'0 IUkipIlHe, B 06wem CONIaCyIOTCH C 

Tpe6OBaHHRMEi TeOpHH. 3Ha=IeHkle KpllTeptrR npaHaTJlR AJlfI BOaAyXa OCTaBaJlOCb IIOCTOHH- 

HbIM BO BCeX OmITax, TenI He MeHee ynanocb TeopeTmecKH rIOKa3aTb BOBMOX(HOe BJIBFIHMe 

AJIH ~1m6b1x 3HaseHElt HpllTeptrFi RpaHfiTJIFI. I;JIWOaapH BbICOKOMy TepMWIeCKOMy COnpOTH- 

BdeHHIO MaTepHaJIa IteperOpO~KM pe3yJlbTaTbI OlIbITOB MOWHO IIpllMeHMTb HeIlOCpeACTBeHHO 

K cnysam nepeHoca MaccbI. B 0mTax 5mroJIb30Bancn cnenymqd fisfana3oK 3Havemii 

nepeMemmx:KpmTepd rpacro+a, GrH, B Ko~oponr B KagecTBe xapaKTepHor0 pasnlepa 

R3FITa TOJIWHHa IIeperOpOAKIl II pa3HOCTb TeMIIepaTyp BO3nyXa IIOIIe@K OTBepCTIiR, 

3 x lo4 < GrH < 4 x 107. OTHOLueHHe TOJIWHH~I 'UeperopoAKH K cTopoHe KBaHpaTHoro 

OTBepCTRR, H/L, 0,0825 < H/L < 0,66 npn OTBepCTElFIX pa3MepOM 6 x 6 AlOiiMOB, 9 x 9 
JJhIIotMOB I4 12 X 12 AIOtiMOB. 


